Cómo agregar y restar negativos
Los problemas con los números negativos pueden parecer difíciles, pero todavía hay una respuesta correcta y con la práctica, puede aprender a encontrarlo rápidamente. Hay al menos dos formas en que puede pensar en estos problemas. La mayoría de la gente comienza aprendiendo en una línea numérica.
Pasos
Método 1 de 2:
Usando una línea numérica1. Dibuja tu línea numérica. Dibuja una línea larga y horizontal. Marque una línea vertical corta en el medio y etiquete "0." Haz más marcas a la derecha de 0 y etiquetarlas 1, 2, 3, y así sucesivamente en ese orden. Esos son los números positivos. Los números negativos van en la dirección opuesta. A partir de 0 y se mueve a la izquierda, dibuje más marcas y etiquetelas -1, -2, -3, etc.
2. Comience con el primer número en su problema. Digamos que quieres resolver el problema -8 + 3. Encuentra el primer número, -8, en la línea numérica. Dibuja un punto grueso en ese número.
3. Revisar cómo agregar números positivos. En la línea numérica, añadido Un número positivo te mueve a la derecha. Por ejemplo, si comienza en -8 y agregue 3, mueve 3 marcas a la derecha. La respuesta es donde terminas: -5. Esto funciona sin importar en qué número comencemos.
4. Restar números positivos moviéndose a la izquierda. Restar un número positivo te mueve a la izquierda de la línea numérica. Por ejemplo, usted sabe que -8 - 3 = -11, porque -11 es de tres marcas de -8.
5. Añadir un número negativo. Ahora vamos a intentar al revés. Esta vez, comience en +5 en la línea numérica y resuelva el problema 5 + (-2). Debido a que el segundo número es negativo, cambiamos la dirección que seguimos en la línea numérica. Agregar normalmente se mueve a la derecha, pero agregando un negativo número se mueve hacia la izquierda en su lugar. Comience en +5, mueva 2 espacios a la izquierda, y terminas en +3. Así que 5 + (-2) = 3.
6. Restar un número negativo. Ahora intente restar un número negativo: 5 - (-2). De nuevo, vamos a cambiar la dirección normal y movernos a la derecha en lugar de izquierda. Comience en +5, mueva dos espacios a la derecha, y terminas a las 7.
7. Añadir dos números negativos. Vamos a resolver -6 + (-4). Comience en -6 en la línea numérica. La adición se mueve hacia la derecha, pero el signo negativo delante del 4 cambia nuestra dirección, por lo que nos movemos hacia la izquierda en su lugar. Mueva cuatro espacios a la izquierda de -6 y aterrizará en -10, SO -6 + (-4) = -10.
8. Restar dos números negativos. Ahora vamos a resolver -10 - (-3). Comienza en -10. La resta se mueve hacia la izquierda, pero el negativo delante de la dirección 3 cambia a la derecha en su lugar. Mueve 3 lugares a la derecha y la tierra en -3. La solución es -10 - (-3) = -7.
Método 2 de 2:
Sin una línea numérica1. Aprende sobre el valor absoluto. Para otros problemas, es útil entender el valor absoluto. El valor absoluto de un número es su distancia de cero. La forma más fácil de encontrar esto es solo para ignorar el signo negativo delante de ella. Aquí hay unos ejemplos:
- El valor absoluto de 6 es 6.
- El valor absoluto de -6 es también 6.
- 9 tiene un mayor valor absoluto que 7.
- -8 tiene un mayor valor absoluto que 5. No importa que uno sea negativo.
2. Añadir dos números negativos. Agregar números negativos juntos es como agregar números positivos juntos, excepto que la respuesta tiene un "negativo" firmar delante de ella. Por ejemplo, (-2) + (-4) = -6.
3. Añadir un número positivo y negativo. Para un problema como 2 + (-4), es posible que no sepa si la respuesta será positiva o negativa. Si la línea numérica no lo ayuda a resolverlo, aquí está otra forma de resolverlo:
4. Restar un número negativo. Restar lo negativo es lo mismo que agregar un positivo. Por ejemplo, 4 - (-6) = 4 + 6. Esto se pone un poco más duro cuando comienza con un número negativo también. Una vez que sea un problema de suma, puede cambiar el orden de los dos números y convertirlo en un problema de resta ordinario. Aquí están algunos ejemplos:
5. Resuelve problemas con más de dos números. Si tiene una larga cadena de números, solo use estos pasos para resolverlos dos a la vez. Aquí hay un ejemplo:
Video
Al utilizar este servicio, se puede compartir información con YouTube.
Consejos
Los paréntesis alrededor de números negativos solo los hacen más fáciles de detectar. No necesitas incluirlos en nuestro propio trabajo.
Puede pensar en un número negativo como deuda, aunque esto no tendrá sentido para cada problema. Por ejemplo, piense en 40 + (-30) como 40 dólares, y debido a una deuda de 30 dólares. Después de pagar esa deuda, terminas con 40 + (-30) = 10. La misma idea funciona si tiene una deuda de 40 dólares y obtenga uno más de 30 dólares: su deuda total es -40 + (-30) = -70.